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Abstract—Traditional approaches to network provisioning 
assume availability of the reliable estimates for the expected 
demands.  This assumption, however, oversimplifies many 
practical situations when some incomplete information on the 
expected demands is available, and proper utilization of this 
information may improve the network performance.  In a case of 
traffic engineering the uncertainty in the expected demands may 
be a result of sudden changes in the demand pattern, when 
significant statistical uncertainty in determining the varying 
demand pattern and possible undesirable transient effects make 
continuous adjustment of the routing algorithm to varying 
demands difficult.  A long-term network provisioning, e.g., 
capacity planning, is a subject to uncertainties in the overall 
economic conditions.  Despite the network may be capable of 
controlling demands through pricing, the overall economic 
conditions affect the price-demand curve.  As the recent sharp 
downturn in the demand for communication bandwidth 
demonstrated, making long-term network planning decisions 
without assessing reliability of the underlying assumptions on the 
expected demands may lead to disastrous results.  Assuming that 
the expected demand is an unknown mixture of some known 
scenarios, i.e., demand matrices, this paper proposes a 
framework for robust network provisioning by guarding against 
the worst case scenario with respect to the future demands.  This 
framework can be interpreted as a game between the network, 
e.g., service provider, and nature.  The service provider makes 
the network provisioning decisions in an attempt to minimize 
losses due to the uncertain future demands, while the nature 
selects a feasible demand matrix.  Solution to this game balances 
risks of over and under provisioning of the network.  

Keywords-robust network provisioning; uncertain demands; 
game against nature.   

I.  INTRODUCTION 
Traditional approaches to short term network provisioning, 

e.g., flow assignments, as well as long term network 
provisioning, e.g., capacity and topology planning, assume 
availability of the reliable estimates for the expected demands 
[1]-[4].  In economic models the network, i.e., service provider, 
can influence the demand by controlling the price of the service 
[5]-[7].  The purpose of the network provisioning is to optimize 
certain performance criterion, typically to maximize the 
revenue generated by the network.  Network provisioning 
decisions may be very sensitive to the estimates of the future 
demands in models with fixed prices, or, future price-demand 
curves in models with varying prices.  However, in many 

practical situations reliability of the corresponding point 
estimates may be insufficient for planning purposes.   

Initial results produced by the recent surge in activities 
related to measurements of the Internet traffic suggest high 
degree of volatility and uncertainty in the traffic pattern [8]-[9].  
This conclusion raises question of reliability of the 
comparatively short-term network provisioning, e.g., traffic 
engineering, decisions based on the corresponding point 
estimates, since significant statistical uncertainty in 
determining the traffic pattern and possible undesirable 
transient effects make continuous adjustment of the routing 
algorithm difficult.  A long-term network provisioning, e.g., 
capacity and topology planning, is a subject to uncertainties in 
the overall economic conditions.  Despite the network may be 
capable of controlling demands through pricing, the overall 
economic conditions affect the price-demand curve.  As the 
recent sharp downturn in the demand for communication 
bandwidth demonstrated, making long-term network planning 
decisions based on the point estimates for the long-term 
demand forecast without assessing reliability of these estimates 
may lead to disastrous results [10].   

Several attempts have been made to evaluate and 
incorporate the concept of robustness into the network 
provisioning process.  A measure of network lifetime intended 
to quantify the growth and shifts in the load (traffic demand 
perturbations) that a network can sustain has been introduced in 
[11].  A Bayesian framework, based on the assumption that 
uncertainties can be described by some fixed probability 
distribution, has been applied in [12] to QoS routing in 
presence of unstable routes, and in [13] to traffic engineering 
under varying by “business hour” external demands.  Robust 
network management schemes [14]-[16], attempting to 
minimize the worst-case scenario loss in performance due to 
various uncertainties, have been motivated by decision theory 
[17] and complexity theory of algorithms [18].  Possible 
applications of this approach to QoS routing and traffic 
engineering under assumption that the available to the protocol 
network state information can be more reliably quantified in 
terms of the "confidence" intervals rather than point estimates 
have been discussed in [19]-[21]. 

This paper attempts to cast the problem of robust network 
provisioning as a game of the network, e.g., service provider, 
against the nature. The service provider makes the network 
provisioning decisions in an attempt to minimize losses due to 
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the uncertain demands, while the nature selects a feasible 
scenario with respect to the future demands.  In a case of traffic 
engineering over or under provisioning causes mismatch 
between the loads and capacities in the different parts of the 
network.  In a case of long-term network planning over 
provisioning results in low or negative return on capital 
investment, while under provisioning results in inability to 
meet demand and potential lost in the market share.  Once the 
relevant potential losses are quantified (not a simple task!), 
solution to this game balances risks of over and under 
provisioning of the network.   

The paper is organized as follows.  Sections II and III 
describe some possible multicommodity network flow 
optimization model under fixed and, respectively, priced 
demands, assuming complete knowledge of the relevant 
information on the future demands.  Section IV describes 
models for uncertain demands and casts network provisioning 
as a game against nature.  Finally, conclusion summarizes 
results and outlines directions for future research. 

II. NETWORK PROVISIONING UNDER FIXED DEMANDS 

A. Multicommodity Network Flow Model 
Consider a network with set of nodes Nn∈  and set of 

directed links Ll∈  with capacities lc .  The vector of traffic 
flows carried on all possible routes r  in the network 

)( rxx =  satisfy the following capacity constraints: 
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where the total flow carried on a link l  is lλ , the set of 

feasible routes with origin-destination ),( ji  is ijR , the matrix 

of accepted demands  for all origin-destination pairs ),( ji  is 

)( ijyy = , and the matrix of external demands  for all origin-

destination pairs ),( ji  is )( ijµµ = .  Constrains (1) state 

that the total flow carried on each link l  cannot exceed the 
capacity of this link, and constraints (2) state that the accepted 
load for each origin-destination ),( ji  cannot exceed the 
corresponding offered load.  Note that formulation (1)-(3) 
allows for rejection of some portion of offered traffic. 

Sometimes it is convenient to separate admission and 
routing strategies.  The admission strategy is characterized by 
the fraction of the offered load with origin-destination ),( ji  to 
be rejected: 

                                ijijij yL µ−= 1                                  (4)             

Routing strategy is characterized by the vector )( rξξ =  

where the fraction of the accepted load ijy  with origin-

destination ),( ji  carried on a feasible route ijRr∈  is 

                                  ijrr x µξ =                                        (5) 

Capacity constraints (1)-(3) can be rewritten in terms of the 
losses (4) and fractions (5) as follows: 
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 The purpose of the network provisioning is to optimize 
certain criterion, typically to maximize the net revenue 
generated by the network subject to the capacity and Quality 
of Service (QoS) constraints, given demands and prices.  In 
this paper, due to limited space, we consider the following 
very simple model for the QoS constraint: 

                                      *TT ≤                                             (9) 
where 
                                    ∑=

l
lTT                                       (10)                  

and the penalty associated with deterioration of the quality of 
service for traffic of rate lλ  carried on link l  of capacity lc  
is characterized by some increasing and convex in 

),0[ ll c∈λ , function ),( lll cT λ , l∀ .  We also assume that 

∞=lTlim  as 0−→ ll cλ .  Under these assumptions QoS 
constraints (9) imply capacity constraints (1), (6).  The 
following penalty function, inspired by the average delay in a 

1// MM  queueing system, is often used for a packet 
network: llllll hcT λλλ +−= )( , where the processing 

and propagation delay associated with link l  is lh  [22]-[23].  
For this specific penalty function the total penalty (10) after 
normalization approximates the overall average delay in the 
network under hypothesis of independence [22].  Note that 
much more sophisticated models for QoS requirements, based 
on the utility functions of the sources are possible [5]-[7].   
 Given price ijp  charged by the network for a unit of 

accepted demand with origin-destination ),( ji , the total 
revenue generated by the network is 

∑ −=
),(

)1(
ji ijijij pLP µ .  Assuming that the price of the 

link l  capacity lc  is )( lll cqq = , the total price of the 

bandwidth is ∑= l lll cqcQ )( , and the net revenue 

generated by the network is QPW −= . 
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B. Network Provisioning 

If the matrix of expected demands )( ijµµ =  is fixed and 
known, the optimal admission, routing and capacity 
provisioning policies can be determined by solution of the 
following optimization problems.   

 Flow Assignment (FA) problem.  Given link capacities 
)( lcc = , find optimal flow assignment *ξξ =  by 

maximizing revenue P  subject to constraints (6)-(10). 

 Capacity Assignment (CA) problem.  Given route 
assignments ξ , find optimal link capacities *cc =  and 

rejection probabilities *LL =  by maximizing net revenue W  
subject to constraints (6)-(10).   
 Capacity and Flow Assignment (CFA) problem.  Given 
network topology, find optimal link capacities *cc = , 
rejection probabilities *LL =  and route assignments *ξξ =  
by maximizing net revenue W  subject to constraints (6)-(10).   
 These optimization problems are reformulations of the 
well-known optimization problems for network provisioning 
[22]-[23].  The purpose of this reformulation is to 
accommodate demand pricing and uncertainty issues into the 
network provisioning process.  These models can be 
generalized to cover cases of multiple QoS classes, Virtual 
Private Network (VPN) provisioning, stochastic nature of the 
offered load, etc.  The optimization problem for topological 
design can be also reformulated to accommodate demand 
pricing and uncertainty issues.  Due to limited space we do not 
consider more sophisticated optimization models integrating 
pricing with user utilities.  In the rest of this subsection we 
briefly discuss approaches to solving stated optimization 
problems. 
 Solving FA and CA problems is comparatively easy [6]-[7].  
CFA problem can be solved iteratively as follows.  First, given 
link capacities c , find optimal route assignments ξ  by 
solving the FA problem.  Second, given these fractions ξ , 
find new link capacities c  and losses L  by solving the CA 
problem.  Third, repeat the process.  Note, however, that since 
CFA problem typically has multiple local optima [22]-[23], 
the space of possible initial conditions for this iterative process 
should be explored. 

III. NETWORK PROVISIONING UNDER PRICED DEMANDS 

A. Priced Demands 
In economic models [4]-[6] the network is capable of 

controlling demands ijµ  by varying prices ijp : 

                                 )( ijijij pµµ =                                   (11) 
Sometimes, price-demand curve is obtained by maximizing 
user utility function as follows.  If the user utility of 
transmitting from node i  to node j  at rate µ  is )(µiju , it 
is natural to assume that the user maximized its total utility: 

                 ])([maxarg)(
0

µµµ
µ ijijijij pup −=
≥

             (12) 

In a case of monotonously increasing, concave utility function 
)(µiju , rate (12) is the unique solution to the following 

equation: ijij pddu =µ .  The price elasticity is defined as 

follows: )()( ijijijijij dpdp µµε −= .  In a case of 

constant elasticity ijεε = , demand (11) takes form 
ij

ijijij pA εµ = , where constant ijA  may be interpreted as a 

demand potential for origin-destination pair ),( ji .  Since 

ijijijij dppd µεµ )1()( −= , the effect of increase in price 
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In a case of lightly loaded network 1<<ijL , 

1<<∂∂ nkij pL , ),(),,( knji∀ , and thus 
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                (13) 

It follows from (13) that lightly loaded network has incentive 
to increase utilization by reducing price nkp  if 1<nkε , and 

decrease utilization by increasing price nkp  if 1>nkε  [6].   

B. Network Provisioning  
If the price-demand relation (11) is known, the network 

may attempt to price accepted demands in order to maximize 
the revenue generated by the network.  In this subsection we 
formulate some typical optimization problems.  

 Price Assignment (PA) problem.  Given link capacities 
)( lcc =  and fractions )( rξξ = , find prices )( ijpp =  and 

admission policy )( ijLL =  that maximize revenue P  
subject to constraints (6)-(10). 
 Price and Flow Assignment (PFA) problem.  Given link 
capacities )( lcc = , find prices )( ijpp = , admission policy 

)( ijLL = , and fractions )( rξξ =  that maximize revenue 

P  subject to constraints (6)-(10). 
 Price and Capacity Assignment (PCA) problem.  Given 
fractions )( rξξ = , find prices )( ijpp = , capacities 

)( lcc =  and admission policy )( ijLL =  that maximize the 
net revenue W  subject to constraints (6)-(10).   

 Price, Capacity and Flow Assignment (PCFA) problem.  
Find prices )( ijpp = , capacities )( lcc = , admission 

policy )( ijLL = , and fractions )( rξξ =  that maximize the 
net revenue W  subject to constraints (6)-(10).     

1633



 Solution to the optimization problems PA and PFA can be 
formulated in terms of the link costs [6].  However, solving 
PCA and PCFA are to a large degree open problems. 

IV. NETWORK PROVISIONING UNDER UNCERTAINTY 

A. Models of Uncertainty 
All, so far formulated in this paper optimization problems 

for network provisioning assumed that the performance 
criterion Φ  was a known function of the set of design 
parameters, i.e., controlled variables Zz∈ : )(zΦ=Φ .  

The optimal provisioning decision *zz =  was determined by 
solution to the optimization problem )(max* zΦ=Φ  over 

Zz∈ .  Long-term network provisioning decisions, i.e., long-
term price contracts, capital investment into capacity 
expansion, etc., are more prone to uncertainties than short-term 
network provisioning decisions, i.e., short-term price contracts, 
admission and routing strategies, etc.  To account for this 
difference we separate the set of design variables z  into 
variables Ω∈ω  describing long-term network provisioning 
decisions and variables Θ∈θ  describing short-term network 
provisioning decisions: Θ⊗Ω=∈= Zz ),( θω .  Of 
course, in absence of uncertainty, the optimization problem can 
be simply rewritten in terms of the long and short term design 
variables as follows: ),(max* θωΦ=Φ  over 

Θ⊗Ω∈),( θω .  Note that separation of the design 
variables into long and short-term design variables depends on 
the particular uncertainties to be incorporated into the model.  
It is also possible to have design variables describing 
intermediate-term network provisioning decisions. 

 We propose to model uncertainty by replacing criterion 
),( θωΦ  with the following mixture 

                      ∑ Φ=Μ
s ss ),(),( θωγθωγ                    (14) 

of known functions ),( θωsΦ  with unknown weights 

       { }Sssss ,..,1,0,1 =≥==Γ∈ ∑ γγγγ              (15) 

We will refer to criteria ),( θωsΦ  as scenarios and interpret 
criterion (14) as a mixture of these scenarios with weights 

)( sγγ = .  If the scenario s  is known, the optimal network 

provisioning decisions ),( ss θω  are determined by solution 

to the following optimization problem ),(max* θωss Φ=Φ  

over Θ⊗Ω∈),( θω .  However, this solution cannot be 
directly implemented since scenario s  is not known at the 
moment of making the network provisioning decision.   

B. Examples of Uncertainty 
Any projection for the future demands is a subject to statistical 
uncertainty.  If the underlying statistical model does not 
change, the statistical uncertainty can be reduced by increase 

in the amount of historical data used for the projections.  
However, inevitable variations in the external conditions 
affecting the demand pattern may severely reduce the amount 
of historical data to be reliably used for the projection of the 
future demands.  In this situation the point estimates for the 
expected demands ijij µµ ~≈  may be meaningless.  Instead, 

the confidence intervals ],[ ijijij µµµ )(∈  should be used.  In 
this situation one may interpret the end points of the 
confidence intervals as possible scenarios.  The set of possible 
scenarios is determined by the correlations between expected 
demands with different origin-destinations.  This model of 
uncertainty can be also used in a case of variable by “business 
hour” demands, when the pattern of variability is known, in an 
attempt to identify a single traffic engineering scheme suitable 
for all feasible demand matrices. In this case different 
scenarios correspond to demand matrices at different business 
hours, and thus the number of scenarios S  is comparatively 
small. 

 If the network is capable of controlling demands ijµ  by 

varying prices ijp , uncertainty in the overall economic 
conditions affect the price-demand curve (11).  One can model 
this uncertainty by assuming the price-demand curve is a 
known function of the origin-destination ),( ji , service price 

ijp  and scenario Ss ,..,1= : )( ij
s
ijij pµµ = .  Uncertainty 

is modeled by assuming that the scenario Ss ,..,1=  is 
unknown at the moment of making the network provisioning 
decision.  If a scenario Ss ,..,1=  is formulated in terms of 

the user utility )(µs
iju  of transmitting from node i  to node 

j  at rate µ , one may assume that 

                  ])([maxarg)(
0

µµµ
µ ij

s
ijij

s
ij pup −=

≥
             (16) 

C. Network Provisioning 
Broadly speaking, there are two possible frameworks for 
decision making under uncertainty.  The Bayesian framework 
is concerned with the "average" performance by assuming that 
uncertain parameters follow some probability distribution 
[17].  This framework has been applied to QoS routing in [12] 
and to OSPF link weight optimization in [13].  Note that [13] 
implicitly assumed that all scenarios are equally likely: 

Ss 1=γ , Ss ,..,1=∀ .  The Bayesian framework, 
however, may not be adequate if one is concerned with the 
worst rather than "average" case scenario performance.  Such 
robustness concerns can be addresses within the minimax or 
game theoretic framework [17]-[18] by identifying the 
network provisioning decisions that minimize the worst-case 
scenario losses in performance resulted from the uncertainty.  
However, this approach is typically beyond reach due to 
computational complexity even for moderate size networks.  
The following framework offers some relief to this burden. 

 Consider a zero sum game G  of two players )(s  and )(t .  
Player )(s  represents nature and controls actual scenario 
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Ss ,..,1= .  Player )(t  represents the network, i.e., provider, 
and attempts to guess scenario Ss ,..,1=  selected by the 
nature.  To obtain the payoff function for this game st∆  
consider loss in performance incurred by the network if player 

)(t  selects strategy St ,..,1= , and player )(s  selects 
strategy Ss ,..,1= .  Obviously 0=∆ st  if st = .  In an 
unfortunate for the network case st ≠ , 

 0),(max),(max
),(

≥Φ−Φ=∆
Θ∈Θ⊗Ω∈

θωθω
θθω

t
s

s
sst        (17) 

where tω  is determined by solution to ),(max θωtΦ  over 
Θ⊗Ω∈),( θω . 

 Obviously 0minmax
,..,1,..,1

=∆
== stStSs

.  If  0maxmin
,..,1,..,1

=∆
== stSsSt

 

this game has solution in pure strategies, the value of the game 
is zero, and the uncertainty does not result in any loss in the 
performance [24].  If  0maxmin

,..,1,..,1
>∆

== stSsSt
 this game has 

solution in mixed strategies, the value of the game is positive, 
and the uncertainty results in the performance loss quantified 
by the game value [24].  Let ),..,( 1 Sζζζ =  and 

),..,( 1 Sηηη =  be the optimal mixed strategies for the nature 
and network respectively, i.e., the optimal strategy for nature 
is to select scenario t  with probability tζ , and the optimal 
strategy for the network is to bet on scenario s  with 
probability sη .  Then, the optimal value of the long-term 

design parameters optωω =  is ∑= s
s

s
opt ωηω , assuming 

that Ω∈optω .  Since at the moment of selecting the short-
term design parameters θ  scenario s  is already known, the 
network can select optθθ =  by maximizing 

∑ Φ
s

opt
ss ),( θωζ . 

V. CONCLUSION 
This paper has proposes framing network provisioning 

problem as a game against nature, where the network makes 
the network provisioning decisions and nature selects a feasible 
scenario with respect to future demands.  Various extensions of 
the described network provisioning models, e.g., by 
incorporating quality of service, protection and restoration, etc., 
are possible.  Despite this paper assumed a multicommodity 
network flow model, the same approach can be applied to a 
flow level network model with random flow arrivals.  A 
promising extension of the proposed game theoretic framework 
appears to be framing the network provisioning process as a 
sequential (multi-stage) game [25].  This formulation may 
provide a natural framework for cognitive process of network 
provisioning.  However, the most immediate problem is 
developing computationally effective methods for solving the 
corresponding optimization problems. Solutions for some 
particular cases and relation to regularization of ill-conditioned 
problems have been discussed in [19]-[21]. 
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